N.I.M.R.O.D.  
Functions/Subroutines

scores.f90 File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine scoreRVS (b, num_coeff, uscore, typeScore)
 RVS Scores computation.
subroutine FUNSUB_Biological (NDIM2, X, NF2, FUNVLS)
 Differenciated likelihood for biological parameters and treatment effect.
subroutine FUNSUB_Random (NDIM2, X, NF2, FUNVLS)
 Differenciated likelihood for random effects parameters.
subroutine FUNSUB_Error (NDIM2, X, NF2, FUNVLS)
 Differenciated likelihood for error measurment parameters.

Function Documentation

subroutine FUNSUB_Biological ( integer,intent(in)  ndim2,
double precision,dimension(ndim2),intent(in)  X,
integer,intent(in)  nf2,
double precision,intent(out)  funvls 
)

Differenciated likelihood for biological parameters and treatment effect.

AUTHOR : Melanie Prague Daniel Commenges Julia Drylewicz Jeremy guedj Rodolphe Thiebaut

DESCRIPTION :

For each patient, the individual derivative likelihood given the random effects ( $\mathcal{L}^{\theta}_{\mathcal{F}_i|u_i}$) is computed. It is a function of $\frac{\partial g_m(X^i(t_{ij}))}{\partial \theta}$ computed by the ODE solver.

MODIFICATION :

01/09/2012 - Prague - Refactoring

INFORMATIONS:

Parameters:
[in]NDIM2Number of random effects.
[in]NF2Number of components of the integral for the adaptive gaussian quadrature. Generally=1.
[in]Xestimated individual random effects
[out]funvlsfunction value

Definition at line 140 of file scores.f90.

References WorkingSharedValues::adaptive, WorkingSharedValues::b1, WorkingSharedValues::censor, WorkingSharedValues::detersauv, WorkingSharedValues::numcoeff1, WorkingSharedValues::numpat1, Constante::pigrec, WorkingSharedValues::scaleinv2sauv, WorkingSharedValues::scaleinvsauv, solution(), WorkingSharedValues::startsauv, and WorkingSharedValues::systeme.

Referenced by scoreRVS().

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine FUNSUB_Error ( integer,intent(in)  ndim2,
double precision,dimension(ndim2),intent(in)  X,
integer,intent(in)  nf2,
double precision,intent(out)  funvls 
)

Differenciated likelihood for error measurment parameters.

AUTHOR : Melanie Prague Daniel Commenges Julia Drylewicz Jeremy guedj Rodolphe Thiebaut

DESCRIPTION :

For each patient, the individual derivative likelihood given the random effects ( $\mathcal{L}^{\theta}_{\mathcal{F}_i|u_i}$) is computed. It is a function of $\frac{\partial g_m(X^i(t_{ij}))}{\partial \theta}$ computed by the ODE solver.

MODIFICATION :

01/09/2012 - Prague - Refactoring

INFORMATIONS:

Parameters:
[in]NDIM2Number of random effects.
[in]NF2Number of components of the integral for the adaptive gaussian quadrature. Generally=1.
[in]Xestimated individual random effects
[out]funvlsfunction value

Definition at line 388 of file scores.f90.

References WorkingSharedValues::adaptive, WorkingSharedValues::b1, WorkingSharedValues::censor, WorkingSharedValues::detersauv, WorkingSharedValues::numcoeff1, WorkingSharedValues::numpat1, Constante::pigrec, WorkingSharedValues::scaleinv2sauv, WorkingSharedValues::scaleinvsauv, solution(), WorkingSharedValues::startsauv, and WorkingSharedValues::systeme.

Referenced by scoreRVS().

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine FUNSUB_Random ( integer,intent(in)  ndim2,
double precision,dimension(ndim2),intent(in)  X,
integer,intent(in)  nf2,
double precision,intent(out)  funvls 
)

Differenciated likelihood for random effects parameters.

AUTHOR : Melanie Prague Daniel Commenges Julia Drylewicz Jeremy guedj Rodolphe Thiebaut

DESCRIPTION :

For each patient, the individual derivative likelihood given the random effects ( $\mathcal{L}^{\theta}_{\mathcal{F}_i|u_i}$) is computed. It is a function of $\frac{\partial g_m(X^i(t_{ij}))}{\partial \theta}$ computed by the ODE solver.

MODIFICATION :

01/09/2012 - Prague - Refactoring

INFORMATIONS:

Parameters:
[in]NDIM2Number of random effects.
[in]NF2Number of components of the integral for the adaptive gaussian quadrature. Generally=1.
[in]Xestimated individual random effects
[out]funvlsfunction value

Definition at line 264 of file scores.f90.

References WorkingSharedValues::adaptive, WorkingSharedValues::b1, WorkingSharedValues::censor, WorkingSharedValues::detersauv, WorkingSharedValues::numcoeff1, WorkingSharedValues::numpat1, Constante::pigrec, WorkingSharedValues::scaleinv2sauv, WorkingSharedValues::scaleinvsauv, solution(), WorkingSharedValues::startsauv, and WorkingSharedValues::systeme.

Referenced by scoreRVS().

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine scoreRVS ( double precision,dimension(npm),intent(in)  b,
integer,intent(in)  num_coeff,
double precision,dimension(nbpatienta),intent(out)  uscore,
integer,intent(in)  typeScore 
)

RVS Scores computation.

AUTHOR : Melanie Prague Daniel Commenges Julia Drylewicz Jeremy guedj Rodolphe Thiebaut

DESCRIPTION :

The individual scores ( $\frac{\partial \mathcal{L}^{\theta}_i}{\partial \theta}$) is computed by integrating over the random effects via the adaptive Gaussian quadrature .

MODIFICATION :

01/09/2012 - Prague - Refactoring

INFORMATIONS:

Parameters:
[in]bParameters current value.
[in]num_coeffNumber of the paramter considered
[in]typeScoreKind of score to be computed (=1 biological parameter; =2 random effects; =3 error measurement)
[out]uscorescores
[out]pct_score_nofailPourcentage of score computation that did not fail in accuracy
[out]mean_accuracyMean accuracy od score computation

Definition at line 31 of file scores.f90.

References WorkingSharedValues::abserr1, WorkingSharedValues::adaptive, FUNSUB_Biological(), FUNSUB_Error(), FUNSUB_Random(), mpimod::MPIutilisation, WorkingSharedValues::numcoeff1, WorkingSharedValues::numparam, WorkingSharedValues::numpat1, mpimod::numproc, mpimod::repartirSurCoeurs(), WorkingSharedValues::scoreERROR, WorkingSharedValues::scorePRECISION, mpimod::synchroCALCULSCORES(), and WorkingSharedValues::vrais_obs.

Referenced by derivRVS().

Here is the call graph for this function:

Here is the caller graph for this function: